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This paper is the first part of an investigation of the molecular velocity distri- 
bution function in non-equilibrium flows. In  this part, the general features of 
the distribution are discussed and illustrated by a detailed study of its asymp- 
totic expansions in different velocity domains for a weak shock, employing a 
simple relaxation model for the collisions. Using the strength of the shock as a 
small parameter, the Chapman-Enskog distribution is derived, in a lessrestrictive 
way than in previous analyses, as the first two terms in a suitable ‘inner’ asymp- 
totic expansion of the distribution in velocity space, valid only for not very high 
velocities. It is shown that the consideration of two further limits, called the 
intermediate and outer, is necessary for a complete description of the distribu- 
tion in velocity space. The uniformly valid composite expansion demonstrates 
the slow approach to equilibrium of fast molecules. The outer solution depends 
on integrals over the flow and is in general ‘global’, in contrast to the inner 
solution which is essentially local; this introduces certain asymmetries on a fine 
scale even in a weak shock. It is shown, for example, that fast molecules moving 
towards the hot side accumulate by collisionless streaming, whereas those 
moving towards the cold side attenuate like a molecular beam and represent 
essentially a ‘precursor ’ of the hot side. A simple approximation for the distri- 
bution in the precursor is derived, and found to contain, in the outer limit, a 
large perturbation on the local Maxwellian; this results in an approach to equi- 
librium like exp ( - 1 ~ 1 % )  on the cold side. 

A heuristic extension of the argument to the true Boltzmann equation leads to 
the result that for molecules with an interparticle potential varying as the inverse 
m-power of the distance, the approach to equilibrium through the precursor is 
like exp ( -  I Z ~ ~ ) ,  where I = m/(m+ 2 ) .  

1. Introduction 
The fundamental unknown in the kinetic theory of gases-or, as a matter of 

fact, in any gasdynamic problem-is the distribution function, whose develop- 
ment in space and time is governed by the Boltzmann equation. Because of the 
complexity and non-linearity of this equation, a detailed knowledge of the 
distribution is hard to achieve except in the limiting cases of complete equilibrium 
and collisionless flow. However, one is most often interested in only the first 
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few moments of the distribution rather than in its detailed structure; and this 
motivation had led to the development of various methods which, in some sense, 
tend to focus attention on the moments. 

In  a rather special sense, the Chapman-Enskog-Hilbert theory of the Boltz- 
mann equation (see Grad 1958 for an excellent discussion) was one of the earliest 
attempts to solve the equation in terms of the moments. Hilbert’s analysis, 
extended by Grad (1958)) showed that if the distribution f could be expanded in 
a certain small parameter, then it was a functional of only a few moments. This 
expansion procedure for f was expected a t  one time to yield the general solution 
of the Boltzmann equation (Chapman & Cowling 1952, p. ix), but it seemsunable 
to do this as no satisfactory account can be taken of initial or boundary con- 
ditions, which logically can be prescribed only on f ,  and must therefore appear 
in any solution of the problem which is uniformly valid in space and time. 

A different kind of approach, proposed and used by Grad (1949), assumes that 
the form of the distribution function in the space of molecular velocity v is the 
same as in a first approximation in the Chapman-Enskog solution, but leaves 
free the parameters in it, which are essentially the first thirteen moments of the 
distribution. Partial differential equations for these thirteen moments are then 
derived, and a solution of these equations was expected to give a more satis- 
factory description than the Chapman-Enskog approximations. 

However, many difficulties (clearly summarized by Schaaf & Chambrk 1958) 
soon appeared both with the higher (or Burnett) approximations in the Chap- 
man-Enskog theory and with the thirteen-moment method of Grad, especially 
in flows with large departure from equilibrium. A third class of moment methods, 
designed to cover especially these highly non-equilibrium regimes of flow, are 
those proposed by Mott-Smith (1951) and Lees (1959) and extended and modi- 
fied by various workers. In  general, these methods again assume a certain form 
for the distribution function, departing most significantly from previous work in 
allowing for bimodal and discontinuous behaviour in velocity space. The assumed 
functions contain a few free parameters which are later evaluated by some kind 
of moment equation. 

It is possible that eventually most problems in rarefied gasdynamics will have 
to be solved by some kind of moment technique. However, for a moment method 
to be useful, one needs to know the form of the distribution function reasonably 
well. Unfortunately, one’s intuition about the distribution function does not yet 
seem strong enough to make reasonable guesses about its form. A major purpose 
of this report is to set forth some considerations which determine the structure of 
the distribution, and in particular to illustrate them by a fairly detailed study of 
the distribution function for a weak shock. The shock is an effective testing ground 
for various ideas and approximations, because it represents a highly non- 
equilibrium flow which has a simple geometry and is physically realizable. We 
consider the weak shock in detail because this provides a natural small parameter 
for studying asymptotic solutions. Further, we assume a simple relaxation model 
for the collision terms. This enables us to keep the discussion quite rigorous. 
However, many of the conclusions we reach here turn out to be true for strong 
shocks and other highly non-equilibrium flows, and are in fact capable of general- 



Distribution function in non-equilibrium flows. 1 3 

ization to the true Boltzmann equation. Part 2 of this study will be devoted 
to some of these extensions, but one such result will be mentioned in $8 of this 
paper. 

Before we proceed to the main analysis, some further remarks on the nature 
of the problem considered here and theresultsobtainedmaybeusefulat this stage. 
It is well known that in flow past bodies or in time-dependent flows, certain non- 
uniformities in the continuum solutions may be expected even when the de- 
parture from equilibrium is nominally small. For example, in flow past a body at  
small Knudsen numbers, the Navier-Stokes solution describes adequately most 
of the flow, but fails at  distances of the order of a mean free path or less from the 
surface. At first sight, one would expect that such non-uniformities should not 
arise in steady flow in the absence of any surfaces, especially if, as in a weak 
shock, the (nominal) departure from equilibrium is small. One of the conclusions 
of the present work, however, is that there is a different and more basic non- 
uniformity in the continuum theories that makes such an expectation false. 

Briefly, the reason for this is that the Chapman-Enskog solutions for the distri- 
bution, which lead to the Navier-Stokes and other continuum equations, are not 
uniformly valid in the space of molecular velocities (which we will call v-space). 
This non-uniformity is well known, and is evident from the fact that at sufficiently 
large velocities the Chapman-Enskog perturbation term is no longer small, and, 
in fact, can even make the distribution negative. However, a t  large velocities the 
distribution function itself is usually very small, so it has been generally and 
tacitly assumed that the non-uniformity is not very important. 

To test this assumption, we seek in the following analysis solutions for the 
distribution which are uniformly valid in v-space. We freely use the terminology 
of the method of matched asymptotic expansions, although, as we are dealing 
essentially with integral rather than differential equations, the nature of the 
problem is rather different. From the view point of this technique, it will be shown 
that the Chapman-Enskog theory is only an inner expansion for the distribution 
in v-space not valid for relatively high velocities. This inner expansion depends 
only on the ‘local’ flow and yields similarly local results (such as, for example, 
that the stress a t  any point is linear in the velocity gradient at the same point, 
and that the flow is determined by partial differentia1 equations). However, to 
obtain a complete description of the distribution, two other limiting solutions 
are necessary. The outer solution, for example, will be found in general (but not 
necessarily always) to depend on  the whole flow, and can be found only as the 
solution of integral equations; i.e. it is global in general. Only if the outer solution 
is not a large perturbation on local equilibrium (in some sense) will the Navier- 
Stokes solution be a good approximation to the flow. But even in a weak shock, 
there are regions (on the cold side, as we shall see) where the perturbation due 
to the outer solution dominates over the inner, and leads to an approach to 
equilibrium quite different from that given by the Navier-Stokes or any other 
continuum theory. A ‘small ’ departure from equilibrium is thus only a necessary 
but not sufficient condition for the validity of the continuum theories. 

At this point, the present analysis supports and adds to a very significant and 
interesting result obtained by Lyubarskii (1961), who has shown (with the model 
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Boltzmann equation) that the final approach to equilibrium in a weak shock is 
like exp ( - C,[x[ #), rather than like exp ( -  C21xI), as would be expected by any 
of the continuum theories (C, and C, being some constants). Lyubarskii points 
out that the fast molecules are responsible for this result. His work involves an 
analysis of the asymptotic solutions of the integral equations for the moments, 
and avoids a discussion of the distribution itself. The present study, on the other 
hand, concentrates on the distribution (one of our aims being to understand its 
structure in some detail, possibly as a guide in the use of moment methods); but 
it so happens that once the two-sided nature of the distribution is grasped, one 
call derive Lyubarskii’s result very simply by the use of the ‘precursor’ distri- 
bution, obtained in $ 7 .  Moreover, the discussion of the distribution brings out 
explicitly an important distinction between molecules from the hotter and colder 
regions of the flow, and shows that the approach to equilibrium is like 

exp ( - C,lXl+) 
only on the cold side of the shock. Finally, the simple derivation of the precursor 
distribution makes possible the immediate extension of the idea to other flows 
(involving the presence of surfaces and large departures from equilibrium), and 
to the true Boltzmann equation. 

The plan of this paper is as follows: in $ 2 ,  we set forth some general considera- 
tions on the structure of the distribution, without reference to any particular 
flow or special molecular model. A brief resume of the classical Chapman-Enskog 
approach and the Navier-Stokes solutions for the weak shock is given in 5 3, as 
they are required later. The basic integral equation is formulated in $ 4. The inner 
solution to the distribution is obtained in $ 5, where its relation to the Enskog 
procedure is also discussed. The next two sections deal with the distribution at 
very high velocities, for molecules moving towards and away from the hot side, 
respectively. The precursor distribution and its consequences are discussed 
in § 7 ,  and the results are extended to more general molecular models in $ 8. 

A brief, preliminary account of a part of $35, 6 was presented at the Fifth 
International Symposium on Rarefied Gas Dynamics, held at Oxford in July 
1966 (Narasimha 1967). 

2. Some general considerations 
The discussion in the rest of this report, excepting $8, concerns a model of the 

Eoltzmann equation. The purpose of this section is to present a general perspec- 
tive which is independent of any particular collision model, but which neverthe- 
less provides the motivation for the analysis of later sections. In particular, for 
flows with a small departure from equilibrium (such as that through a weak 
shock), we propose to obtain the Chapman-Enskog expansion by an asymptotic 
analysis which brings out the nature of the underlying assumptions. 

We denote the distribution function by f = f ( x ,  t ;  v) as usual; xis position, t the 
time and v the molecular velocity. We write the Eoltzmann equation as 

(:t ~ + v .  - a3 f(x, t ;  v) = G ( f )  -fL(f); 
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where G and L are the well-known gain and loss operators on f, 

5 

L ( f )  = f (w)g IdQDW.  s 
Here g is the relative velocity between two molecules having velocities V, w 
before collision and v', wf after collision; I is the cross-section for scattering into 
the elementary solid angle dQ; and Dw is an element of volume in w-space. We 
will write the gain term G(f,, f2) if it involves two different distributions, as G is 
quadratic in f .  

For many purposes it is convenient to rewrite (2.1) in the form 

at ax 
- as = 1, - as = v, df+fL(f)  as = G(f), 

where s is a parameter along the trajectory or the characteristic, equal to the 
time of flight a t  velocity v. The integration of (2.2) gives 

where a = so" L(s')ds' ,  (2.4) 

andf(0) is an initial or boundary condition at  s = so. (The fact that in flow past 
a body it may not be possible to prescribef(0) arbitrarily is not of much concern 
for our considerations here.) Enskog (1928) seems to have been the first to write 
the Boltzmann equation in this form. In  general, when the molecules are con- 
sidered as centres of force, the operators L and G will diverge, and it is assumed 
that some kind of cut-off, e.g. in scattering angle, has been applied before writing 
down (2.3). The first term in this equation represents the exponential decay of 
the initial condition ( L  evidently being of the order of the inverse of the mean 
free time t,); the second term accounts for the net gain of particles over the 
characteristic, after allowing for attenuation by collision. 

Now, if a is very large, and G / L  varies slowly in a, the dominant contribution 
to f (a )  may be estimated by an asymptotic evaluation of the integral in (2.3). 
Suppose, to be specific, that the flow variations (and hencef, G(f) etc.) have a 
time scale tf $ t,. Then, introducing 

8 e tJt, < 1, S = slt f ,  (2.5) 

we obtain the leading terms in an asymptotic expansion of (2.3) as 

where the derivatives are all evaluated at the point S. Equation (2.6) is still very 
complicated as it involves f on both sides. If we now further expand in 0, writing 

(2.7) 
(2.8a) 
(2.8b) 

f = f@) + Of'" + O2f'2) + . . . , 
L ( f )  = L(fO)  + Wfl)  + 0 ( O 2 ) ,  
G ( f )  = G(f(0),f'O)) + 19[G(f '~) , f ( l ) )  + G(f(l),f(o))]+ 0 ( O 2 ) ,  
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substitute these expansions into (2.6) and collect terms of equal order in 0, we 

get first f ( ' )  = G(f (0 ) , f (O' ) / l ( f 'O) ) ,  (2.9) 

f ( 0 )  = n(#?/r)g exp { - P(v - u ) ~ )  = F .  
which means that the collision terms for f ( O )  are zero and hence that f ( O )  is the 
Maxwellian 

(We use n for number density and u for gas velocity; P-4 is the most probable 
thermal speed.) 

Similarly, we find that the next higher order term f ( l )  is governed by the 

(2.10) 

(2.11) 
equation l a  

G(F,f('))+ G( f ' ' ' ,B) -F~( f ( ' ) ) - f ( ' )L(F)= - t, Z F ,  

where we have used (2.10). Equation (2.11) is related to the integral equation 
obtained for the so-called 'second approximation ' in the Chapman-Enskog 
procedure, which we shall briefly describe for a model Boltzmann equation in the 
next section. The chief difference is that in the Chapman-Enskog procedure, the 
differential operator on the right of (2.11) is also expanded in 8;  keeping the 
lowest term in this expansion amounts to assuming that the flow is described to 
a first approximation by Euler's (inviscid) equations, and leads to the Chspman- 
Enskog results. 

The present approach brings out the following points. In  the first place (2.11) is 
here obtained as a step in an asymptotic calculation, thus showing explicitly the 
asymptotic nature of the Chapman-Enskog expansion. More importantly, it is 
clear that whether the asymptotic evaluation of the integral in (2.3) is useful will 
in general depend on the particular characteristic. Now (r is proportional to the 
time of flight a t  velocity v from an initial point (where, for example, f may have 
been given) to the 'field' point (x, t )  (wherefis desired). As v takes all possible 
values to infinity, it  is possible that there will always be sufficiently high values of 
v, a t  any given (x, t ) ,  such that (T would be small; and hence such that the first 
term in (2.3) would not be negligible and that the second would not have a valid 
asymptotic development of the form (2.6). In  fact, for small (ry (2.3) indicates that 
f will in general be given by integrals over s, rather than in terms of local de- 
rivatives as in (2.6). The distribution a t  small (T thus corresponds to a kind of free 
molecule flow; and this is so, irrespective of how slow the flow variations are, i.e. 
how small 0 is. I n  other words, the solution of (2.11) cannot be uniformly valid 
in velocity space; it provides only an 'inner' asymptotic expansion (as we shall 
call it) for the distribution. 

This conclusion is confirmed by an examination of the solution itself, as we 
shall see in the next section; and it has a simple physical explanation. For mole- 
cules which are centres of force, the scattering angles are on an average smaller 
a t  higher velocities. Very fast molecules thus do not suffer many effective col- 
lisions, and have larger free paths. One can, if one wishes, define a velocity- 
dependent Knudsen number, which is arbitrarily high for sufficiently high 
velocities, no matter what the 'mean' (i.e. the conventional) Knudsen number is. 
Bast molecules therefore tend to remain in a sort of free-molecule flow. 

We shall now illustrate these general conclusions by the detailed discussion of 
the flow in a weak shock, using a simple collision model. 
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3. The classical solution for the weak shock 
For future reference, and t o  bring out certain points more explicitly, we give 

a brief r6sumB of the classical theory of the weak shock. We assume a simple 
relaxation model for the collision terms (Bhatnagar, Gross & Krook 1954; 
Welander 1954) as this simplifies the mathematics to some extent, so that we 
can write the model Boltzmann equation as 

(;+v.:)f(x,t;v) = .(P-f). (3.1) 

Here a i s  supposed known as a function of the state of the gas, but for a weak shock 
it is adequate to treat it as some given constant. A more detailed discussion of the 
significance of the model in general and of the value of a can be found in Liep- 
mann, Narasimha & Chahine (1962, cited as LNC below), and Narasimha (1961). 

It is convenient to write down here what we shall call the equations of motion, 
which are obtained by multiplying (2.1) or (3.1) with the collisional invariants 1, ZI 

and w 2  and integrating over all velocities: 

I 

P = PPP. I 
Here p is the density, p the pressure, T~~ the additional stress, and qi the heat flow 
vector; and the summation convention has been followed in the notation. 

The classical Chapman-Enskog procedure for solving (3.1) in a problem like 
the structure of a weak shock may be described as follows. One first extracts 
from (3. 1), by obvious non-dimensionalization, a small parameter 

8 = t,/tf = (atf)-' 

where t,, the collision time characteristic of the right-hand side of (3.1), can be 
taken to be a-l. It is then assumed, as in the previous section, that f can be 
expanded as the series (2 .7 )  in 8; this series is now substituted in (3.1), and 
collecting terms of equal order in 0 and using the equations of motion as de- 
scribed in detail by Chapman & Cowling (1952) for the full Boltzmann equation, 
one obtains 

f ( 0 )  = F ,  (3.3) 

etc. where ck = vl, - uk is the peculiar velocity. Thus the zeroth order term corre- 
sponds to local equilibrium; and the first order term is a correction for the de- 
parture from equilibrium in terms of velocity and temperature gradients. 
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From the solution (3.4),  one can easily show that the stresses and heat flux are 
related linearly to the velocity and temperature gradients through the usual 
transport parameters; for the model under study, we obtain a kinematic vis- 
cosity v = +aP. Use of these parameters in (3.2) yields the Navier-Stokes equa- 
tions for a monatomic Stokesian gas with Prandtl number unity. 

The Navier-Stokes equations were solved for steady flow through a plane 
weak shock by Taylor (1910). If we define 

N = (n-n1) / (m2-%) ,  B EE ( P - P M 3 2 - P 1 ) ,  (3.5) 

subscripts 1 and 2 denoting conditions at upstream and downstream infinity 
(see figure l), we can write Taylor’s solution as 

N,(<) = B,(t) = &( 1 + tanh it), (3.6a) 

t G ?pulx/v = +ea/3u1x, B = (n2-n,)/n,, (3.6b) 

using values appropriate to the model. For a weak shock, u1 E (5RT/3)*,  the 
speed of sound in a monatomic gas. 

The shock thickness as given by (3.6) is O(e-l), and hence the gradients within 
the shock are 0 ( e 2 ) .  This is consistent with the use of the Chapman-Enskog 
expansion, (3.3) and (3.4). There is, in fact, little doubt that the gross features of 
the structure of a weak shock are described adequately by the Navier-Stokes 
theory, and both theory and experiment lend support to this view. Thus, the 
computations made on the full non-linear model Boltzmann equation (reported 
in LNC) showed that for weak shocks (Mach number M 5 2.0), the structure 
was essentially Navier-Stokes; the work of Darrozhs (1963) supports this 
conclusion. Also the experiments of Sherman (1955) have shown that the 
profile and the thickness of the shock agree well with Navier-Stokes results at  
M 5 2.0. 

However, there are certain difficulties with the Chapman-Enskog procedure. 
First, the expansion (2.7) implies that the perturbation on f ( O )  is small for all 
velocities v, i.e. that Of1) < f ( O )  uniformly in velocity space. From the solution 
(3.4), however, this is immediately seen to be not so; for any given departure from 
equilibrium (a measure of which is presumably either of the gradients a/3/ax, or 
au,/ax,), however small, one can always find large enough values of the velocity 
ck such that the perturbation is not small, and even such that the total distri- 
bution is negative (see for example, figure 2) .  If the departure from equilibrium 
i s  large, as within a strong shock (see, for example, LNC), this difficulty with the 
Chapman-Enskog solution can become severe. For example, Sherman & Talbot 
(1960) show such a calculated distribution a t  a Mach number of 5.2,  with f going 
negative a t  quite small values of the velocity. However, the velocities at which 
the perturbation becomes appreciable grow larger as the departure becomes 
smaller; hence moments off, of a given order, may not be affected seriously iff is 
already small at the high velocities. But this has to be demonstrated. 
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Secondly, while solving for any term in the series (2.7), Chapman and Enskog 
use the equations of motion corresponding to the previous approximation to f .  
Thus, in computing f ( l ) ,  the time derivatives of the flow quantities (required for 
evaluating aP/aS in (2.11)) are supposed given to some approximation by the 
equations of motion corresponding to f = f ( 0 )  = P, i.e. the inviscid Euler equations 

Y 

Cold side : Hot side: 

f = F ,  

9 
Flow 

FIGURE 1. Co-ordinate system and notation. 

obtained by putting qi = rij = 0 in (3.2) (Chapman & Cowling 1952, p. 112). 
This implies that the Euler equations are in some sense a first approximation to 
any flow, and that the Navier-Stokes equations, which correspond to f = F + €'f(l), 
are only a small correction to them. But it is well known that there are many gas 
flows accounted for very well by the Navier-Stokes equations but not even 
qualitatively by the Euler equations. It therefore seems that the Chapman- 
Enskog procedure is perhaps too restrictive, although not inconsistent. 

A closer study of the distribution function is clearly necessary to bring out the 
consequences of these limitations of the Chapman-Enskog theory. 

4. Formulation of basic integral equation 

For steady one-dimensional flow through a plane shock layer, (3.1) reduces to 

with flow taken to be along the x-axis in a shock-fixed co-ordinate system. There 
are now only two families of characteristics, corresponding to vx < 0; thus the 
integral equation (2.3) becomes, using the model collision terms, 

The first term on the right of (2.3) does not appear in (4.2), as the boundary 
condition is at  infinity and does not contribute to the solution. 
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At v, = 0, we have of course f+ = f- = F ,  from (4.1). Thus the very slow mole- 
cules are in equilibrium in a sense, and this is clearly true for the general model 
equation (3.1) in any flow, and is not particular to the weak shock. 

Before proceeding with further analysis, it  is useful to simplify and rewrite 
the basic integral equation (4.2). First we note that we can integrate out the 
transverse components vy, v, of the velocity vector from (4.2), and work only in 
terms of the contracted distributions 

(4.3a) 

F(x ,  w,) = F(x,v)dvydv, = .n(p/n)*exp [-,B(W,-U)~]. (4.3b) 

We shall use the same symbols f, F also for the contracted distributions, as the 
presence of only a single component vz in their argument is enough to differ- 
entiate them from the full distributions. Secondly, we introduce the non- 
dimensional variables 

s 

v = v,&, u = upk, c = v- u, 7 = ($€U1 V)-1, (4.4) 

where, for a weak shock, U ;  21 in a monatomic gas. Further, the quantities n, 
/3 and u in (4.3) can be written in terms of the normalized variables N and B of 
(3.5), using the Rankine-Hugoniot relations for a weak shock (i.e. €-to). Finally 
we change from x to the non-dimensional variable 5 of (3.6 b). In these new vari- 
ables (4.2) takes the form 

where F(<’, V ;  E )  = .nl(p1/7r)i ( 1  + s N )  (1 + (1 - +E + +j%2)B}& 

x exp { - (1 - $e + y s 2 )  BC2 + O(s3)} + O(s3),  (4.6) 

and we have retained terms up to O(s3) in evaluating the jump relations across 
the shock. It may be emphasized that although the choice of 6 as the inde- 
pendent variable is inspired by the Navier-Stokes solution, this solution itself 
is not used anywhere in writing (4.5) and (4.6). For F in (4.5), we shall use either 
of the representations (4.3b), (4.6) as proves convenient. 

5. Inner solution 
We now study different limits of the solution of (4.5), in the spirit of  the per- 

turbation techniques developed by Kaplun, Lagerstrom and Cole (see, for 
example, Van Dyke 1964). First we define an inner limit as the process s+O, 
V fixed (or equivalently C = V- l7 fixed, as U = O(1)) .  The exponent in (4.5) 
contains in this limit a large number 7 = O(s-l), and using Laplace’s method we 
obtain an asymptotic expansion for the inner solution, in inverse powers of 8: 
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This will be recognized as a specialization of the expansion (2.6) to a particular 
model and flow. To see its relation to the Chapman-Enskog solution, we may use 
the representation (4.3 b )  for F and write 

aF a F d n  a F d u  aFdp 
at- an a( au a< a p d ( ‘  

Employing the steady one-dimensional version of the complete equations of 
motion (3.2)) we can eliminate n and u from aFlat, and write the second term in 
the expansion (5.1) as 

where we have omitted subscripts on T and q as only one component of these 
quantities is relevant in our one-dimensional problem. It is interesting to note 
that the continuity equation alone is enough to write the second term of (5.1) in 
terms of the two gradients du/d& @/at; but the expression so obtained contains 
u explicitly, and so would not be Galilean-invariant with respect to the gas 
velocity, as (5.2) is. 

The first two terms within the brackets on the right of (5.2) are O ( E ) ;  if r / p  and 
P*Aqlp are o(e), then the last two t,erms, enclosed within curly brackets, can be 
ignored compared with the first two, which can be recognized as the contracted 
form of the Chapman-Enskog terms (3.4). If we compute T and q from the first 
two terms, as in $3,  then we find that the last two terms are indeed O(e2) and so 
negligible in the limit. Hence for a weak shock the inner and the Chapman- 
Enskog solutions are equivalent to the lowest order. 

It is convenient for later work to rewrite the lowest order terms in the inner 
solution in the non-dimensional variables (4.4). Noting that Pc2 E P1c2 = C2, we 
will have, from (5.1) and (5.2)) 

f* = ~ [ i + g ~ 2 p q 2 ~ 2 -  I ) +  (B’/ul)c(~-c2)}+0(e3)1, (5.3) 

where the dashes on N and B denote derivatives with respect to 6. Equation (5.3) 
can also be obtained directly from (5.1) using the expression (4.6) for F .  

The term in N’ in (5.3) is responsible for the stress T ,  and the term in B‘ for the 
heat flux q. It is evident that this solution is not valid for arbitrarily large C; the 
heat transfer term becomes 0 ( 1 )  for C = O(a-3). For C greater? than this, f+ 
as given by (5.3) will even become negative, indicating the need for a different 
asymptotic expansion. 

If we calculate a moment of the distribution using (5.3)) the contribution from 
velocities greater than e-8 to a moment of order n (i.e. to the integral If Vnd V )  
is easily shown to be O(e-(n--lO)/G exp { - e-*}). Hence for a moment of given order, 
the use of the inner solution over regions of velocity space where it is not valid 

t It is convenient to interpret the words ‘greater than’ and ‘less than’ in an order-of- 
magnitude sense. Thus C greater than e-3 implies that we consider the limit eBCS + 00. 
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yields contributions which are exponentially small in E .  But for fixed E ,  these 
contributions increase with the order of the moment and are not negligible when 

(n- 10)/6 N (eBlne)-l. 

We can make some general remarks at this stage on the inner solution. First, 
it is clear that even in a strong shock, for which e i s  not small, the asymptotic 
argument which led to (5.1) and (5.2) is valid for sufficiently small velocities, 
because the exponent in (4.5) is inversely proportional to the velocity. Therefore, 
(5 .2)  always gives the correction to F at sufficiently low velocities. Hence, al- 
though for a weak shock the correction remains small, and so the solution (4.9) 
remains valid, even for C quite large (it has only to be less than E - P ) ,  in the more 
general context it is convenient to think of the inner solution as the limiting 
solution for relatively low velocities. However, for a strong shock r /p  and q@/p 
are not small (as shown by LNC), and hence the last two terms in (5.2) cannot 
be ignored. So, while the inner solution would still be known in terms of the local 
flow, the problem cannot be closed and in particular does not lead to the 
Navier-Stokes equations. A second reason why the Navier-Stokes equations 
would not be valid is of course that even the complete inner solution (5.2) would 
cover only a small part of velocity space, and so cannot yield the correct moments. 

Secondly, in deducing (5.3) we have not appealed t o  the Euler equations as a 
first approximation, as the Chapman-Enskog procedure does. It was only as- 
sumed, and later verified, that r /p  and qba/p were small. In particular, nothing 
was said about the relative magnitude of the different terms which appear in 
the momentum equation-in fact (see, for example, Lighthill 1956) they are all 
of the same order within the shock! Thus, the Chapman-Enskog decomposition 
of the time derivative in (2.11) has been avoided. 

Finally (5.1) shows that our inner solution, and the distribution function at 
low velocities in general, depend only on the local flow, i.e. on the flow quantities 
and their derivatives. This gives the inner solution a Markovian character; and 
when the inner solution is a sufficiently good approximation to the complete 
solution, it leads to the Navier-Stokes equations, in which the diffusive terms 
(containing viscosity and heat conductivity) are a direct consequence of the 
Markov properties of the inner solution. 

6. Distribution of fast molecules moving downstream 
To obtain the distribution at arbitrarily high velocities, we have to make a 

distinction between molecules moving downstream and those moving upstream. 
This is to be expected from the considerations of Q 2, where it was shown that at  
sufficiently high velocities the distribution is, in general, determined by integrals 
over the flow. 

We will actually find it necessary to construct two further limits below to 
obtain a complete description of the distribution. It is again convenient to think 
of these two limits together as corresponding to fast molecules, interpreting the 
word ‘fast’, in a relative sense, to mean those velocities for which the inner 
solution is not valid. 
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6.1. The outer limit 

We define this as the process e+ 0 , ~  fixed (or equivalently, EV fixed). Extracting 
a factor F ,  from the right side of (4.6), and substituting for C in terms of 7 from 
(4.4), the outer approximation to F can be written, after some algebra, as 

Thus, with B > 0, F/F, is exponentially great in the outer limit (although F 
itself is small). Physically, this means that because of the increase in tempera- 
ture as we move downstream across the shock, the number of particles scattered 
into the high velocities at a given point is much larger than a t  any point upstream 
of it. 

Putting (6.1) into (4.5), we obtain the outer integral equation to O(e), 

I f  B and N are o(e) ,  we get f +  M Fl to the lowest order, and local equilibrium is 
then a good approximation also in the outer limit. 

Consider now points within the shock, with B = O( 1). An asymptotic estimate 
of the integral (6.2) yields the lowest order outer solution as 

q 3 F .  
9 

f+ 2O(dB/g 

Thus at very high velocities ( q + O )  the distribution falls faster than the local 
Maxwellian by the inverse cube of the velocity; and the perturbation from the 
local Maxwellian, say ( f +  - P) /F ,  tends to the value - 1. 

It is worth considering briefly the physical significance of this simple result. In  
obtaining it, we have found that the second and third terms in the exponential 
in (6.2) are negligible. This means, in particular, that the attenuation due to 
collisions (represented by the third term) is negligible in the outer limit, which 
we may therefore class as collisionless. But in contrast to normal collisionless 
flow, the outer solution does not represent a memory of an upstream distri- 
bution (which would be P1 in the present problem). This peculiarity i s  due to the 
relatively much more intense ‘creation’ (by collisions !) of fast particles at the 
hotter places, which feature, as we have already noted, is a direct consequence of 
( 5 . 2 ) .  And once created, these fast particles are hardly ever lost by collisions as 
their free paths are large, and so they accumulate by streaming. This result may 
seem at first sight to be due to the particular collision model we have chosen; 
but clearly it provides a specific description of a much more general phenomenon 
which is an essential part of the irreversible process that occurs within a shock: 
namely, the transfer of molecules from low velocities to high velocities with in- 
crease in temperature as we move downstream across the shock. This conclusion 
is supported by the more detailed comparison with other models which we shall 
undertake in 5 8. 

A further consequence of this mechanism is that the outer solution for f+ turns 
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out in this particular case to be local, like the inner solution. We shall see in $7 
that this is not true for f - .  

We see, therefore, that even in a weak shock, in which the departure from 
equilibrium is nominally small, the distribution at a given point contains 
features characteristic of both continuum and collisionless flows (even if the 
collisionless flow is rather peculiar). We found previously that the inner solution 
(describing what one may call the continuum core) leads to large negative 
perturbations a t  high velocities. The outer solution (6.3) similarly leads to in- 
finities a t  low velocities (v-tco). A simple matching of these solutions is not 
therefore possible, and an intermediate limit covering the transition region is 
necessary. 

1.0 

I 
1 
I 
I 

E = 01, N= 0.5 

1 'w outer (collisionless) 

0 I 10 20 30 

C 

FIGURE 2. The distribution function a t  the centre of the shock for molecules moving 
downstream. The inner or Chapman-Enskog curve is from (5.3) and is valid a t  relatively 
low velocities. The collisionless solution is from (6.3) and is valid only at extremely high 
velocities. The uniformly valid solution, (6.6), contains both these and the intermediate one. 

6.2. The intermediate limit 

This limit process can be defined as e --f 0, 5 = E*T fixed. Carrying it out on F in 
(4.6), we can write the intermediate limit of the integral equation as 

Estimation of this integral by standard methods gives the intermediate solution 

which again is local. The outer limit of this solution (<+ 0) agrees with the outer 
solution (6.3) (which is in fact contained in the intermediate solution). Further- 
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more, the inner limit of (6.5), obtained by letting 6-+00, is in just the right form 
to match the intermediate limit of the inner solution (5.3). It is now possible to 
construct a uniformly valid solution; e.g. we can write 

f+ z F(1+27dr~2C3)-1[1+~2(1+7zGIC3 20 dB 20 dB . 

(6.6) 

It is easily verified that this expression reduces to the lowest order inner, inter- 
mediate and outer solutions in the respective limits. It is possible to write a uni- 
formly valid solution in many different ways, but all these will be essentially 
equivalent to (6.6) to the proper order. Figure 2 shows the inner, outer and 
uniformly valid solutions at a typical point within the shock. 

7. Distribution of fast molecules moving upstream 

new ones defined by 
To consider f- = f( V < 0), it is convenient to transform the variables of Q 6 to 

y - ~  -7 ,  [-= -Q N - = l - N ,  B - = l - B ,  (7.1) 

so that we work with positive quantities; as our characteristic is now directed 
left from 6 = +a, N -  and B- increase along it, from zero at 6 = +a to 1 at 
g =  -a. 

7.1. The outer limit 

This is defined as before, with 6 + 0 as 9- is fixed. The outer approximation to F is 

and the outer integral equation is 

The most significant difference between this and the corresponding equation (6.2) 
for f+ is that the exponent in the integrand of (7.3) is negative, reflecting the fact 
that the most intense scattering into high velocities occurs at  downstream 
infinity, where the temperature is highest. This suggests that the greatest contri- 
bution to the integral (7.3) comes from B-(t') -+0 but in this limit g'+ f m  and 
hence the attentuation (the last term in the exponent) would also be strong. To 
evaluate this effect, we first rewrite (7.3), retaining only the strongest terms, as 

2 E e-E. J 
To estimate this we need to know the asymptotic form of B-(2') as Z' -+ 0. This 
is obtained by the following argument. First, from the previous section, we have 
f+ < F in both the intermediate and outer limits. From (7.3)) we see thatf- < F, 
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in these limits (it is clear that as for f +  the intermediate limit for f- will again 
balance the first and third terms in (7.3); we shall confirm this in $7.2). Thus, 
all limits tend to the local Maxwellian as (+ + co. However, while the contribu- 
tions to the moments are algebraic in e from the inner solution, it is easily shown 
that they are exponentially small from the other two solutions, as they are valid 
only for velocities greater than e-8. Secondly, we have already seen that the use 
of the inner solution over the part of velocity space where it is not valid leads only 
to exponentially small contributions in moments of a given order. The result of 
these considerations is that as (+ +co the inner and consequently the Navier- 
Stokes solutions yield correctly the lowest order contributions to the moments. 
(It must be emphasized that this argument is not valid for (+ -03, because as 
we shall see below in this limit the outer solution does not tend to the local 
Maxwellian . ) 

Thus B 2: B,, and from ( 3 . 6 ~ )  it  now follows that B-(Z')  zz 2' as Z'+ 0. Hence 
(7.4) is asymptotically 

where 

(7.5) 

(7.5a) 

For Z = o(e), (7.5) gives f- z F2 as may be expected. For Z = 0 ( 1 ) ,  it reduces to 

f- z F2 6 7 -  (20e$. / 9 ) ~ -  T-IyT-), (7.6) 
where we have returned to 5 as the independent variable and r (a)  denotes the 
complete gamma function r(a, co) in ( 7 . 5 ~ ) .  

The simple result (7.6) is again very revealing. It shows that, for given ( and 
r-, f JF ,  = O(ev-); since Fz/F is exponentially great in e, this means that the 
perturbation on the locul Maxwellian, say (f- - F ) / F ,  is also exponentially great 
in the outer limit ! Further, taking the limit of (7.6) as 7- + 0,  

f -  z F z [ l - y y y ~ + 2 ~ ~ l n { ( 2 0 e / 9 ) ~ ~ ~ ) + 0 ( ~ ~ l n ~ - ) ]  = 3'' as q-lne-+O, (7.7) 

where y = 0.577.. . is the Euler-Mascheroni constant. Thus for sufficiently high 
velocities (from (4.4) the limit in (7.7) requires more specifically that Vbe greater 
than e-lln e ) ,  the distribution corresponds to the downstream Maxwellian ! The 
departure from Fz for small but non-zero 7- is non-analytic and contains loga- 
rithmic terms. 

Comparing this result with (6.3), we see that for molecules moving upstream 
the memory of the downstream Maxwellian F, is dominant a t  sufficiently high 
velocities, but it is not in general collisionless for 7- = O(1). The nature of the 
solution is hence global, in contrast to the outer solution for f,. 

7.2. The intermediate limit 

In  this limit <- is fixed as e+ 0,  and the relevant integral equation is 

This integral can be evaluated asymptotically by the saddle-point method; as the 
location of the saddle point (say to) is a function of c-, the discussion becomes 
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rather involved, so we content ourselves with quoting some of the main results. 
The general features of the solution can in fact be guessed from (7.8), as we know 
that B- decreases monotonically to zero as t+ +a. It is found that as 5- in- 
creases from zero, the saddle point moves in from + co, till at  a certain critical 
value of c-, say 5: , it  coincides with 6. For 5.- > 5 5 ,  the largest contribution to 
the integral comes from a neighbourhood of [ itself. The solutions take the 
following form. For 5- < YE, E0 > [, 

B; = (d2B/d[2),=,,. J 
This represents an attenuated sample of the Maxwellian at to, so to speak. The 
outer limit of (7.9), obtained by letting 5- --f 0 and using the Navier-Stokes result 
for Bb as go + + co for reasons set forth earlier, is found to be 

f- = (2ny-)4F2exp[-y-{l-t-1n(20sy3/9)}] (7.10) 

in outer variables; and this can be shown to match the intermediate limit of the 
outer solution (7 .6 ) ,  making use of Stirling’s formula for the asymptotic of the 
gamma function. Thus, the point at  which F is sampled by the intermediate 
solution is at  downstream infinity for extremely high velocities, and moves 
closer at  lower velocities. 

For velocities below the critical value, 5- > fl?, (7.8) can be evaluated by 
Watson’s lemma, and yields 

f- M F(1 +e E)-’ 
2053 at ’ (7.11) 

which is identical with the intermediate solution (6.5) for f,. It follows that it can 
be matched with the intermediate limit of the inner solution, as in $6. 

The possibility of matching the different solutions shows that for both f+ and 
f -  a consideration of the three limits we have proposed covers the whole of 
velocity space. We are now in a position to evaluate the moments off at any 
point. However, by the same kind of argument as we used in 5 7.1 to estimate the 
asymptotic form of B(Z‘), it  is easily shown that, for [ fixed, c+O,  the dominant 
contribution to the moments comes from the inner solution. That is, in this limit, 
the lowest order approximation to the solution for moments of a given order is the 
same as the Navier-Stokes approximation. However, this solution is not 
necessarily uniformly valid in f [  as we shall see in the next section. 

7.3. The ‘precursor’ 

It is now interesting to consider the limit [+ -m. In  a co-ordinate system in 
which a shock advances into fluid at rest, this limit corresponds to the region far 
ahead of the shock. 

The inner solution (5.3) shows a perturbation on the local Maxwellian of 
O(e2N’),  where N‘ is exponentially small in 6. Also, the local Maxwellian is itself a 
perturbation of O(cN) on Fl. Thus 

2 

f *  = FJ1+ O(EN)]  [ I+  0 ( e 2 N ’ ) ] .  (7.12) 
Fluid Meoh. 34 
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The outer solution for f +  is bounded above by F = Fl[l +O(eN)]. The outer 
solution for f- has the behaviour, from (7.6), 

f-/F2 = O[s-xP{-7-ItI}l. 

This is again exponentially small in [ for 7- = O(l) ,  except for very small r-. 
Thus, (7.6) suggests consideration of the limit 57- fixed, [/1n s-tco; this gives 

fJF2 = f=P{-7-151}, (7.13) 

which of course represents just the attenuated downstream Maxwellian. The 
intermediate solutions will match at  one end with (7.12),  and at  the other with 
(7.13). In  between they yield attenuations of the local Maxwellians at  all points 
within the shock, all of which are bounded above by F2. This suggests that a rough 
approximation to the whole distribution function as [-+ - co is simply 

(7.14) i f = F , + X ( -  ~)~2exP{-7 - lq} )  

5* 31<1/4~.U,, 

= Tl+X(-  V)F,exp{- lt*/Vl}, 

where X ( x )  is Heaviside’s step function, equal to unity for x > 0 and to zero for 
x < 0. This expression displays the essential features of the distribution far up- 
stream; the slow molecules are in local equilibrium (f 2: Fl), whereas the very fast 
ones coming from the hot side carry a memory of their distribution (f --f F2 as 
7-+ 0). The result represents what may be called the precursor of the shock 
(picturing now a shock advancing into still fluid). As we have noted earlier, by 
far the largest number of particles being scattered into high velocities come from 
the downstream side of the shock, where the temperature is highest. These are 
attentuated by collisions as in any molecular beam; but as the free path is 
proportional to the velocity, and sufficiently far ahead of the shock the fast par- 
ticles will seem to be created effectively a t  [ = 0, we obtain the exponential 
factor shown in (7.14). It is interesting to note that for these molecules there is a 
continual loss but hardly any gain (once they are created on the hot side of the 
shock); in contrast, for the fast molecules moving towards the hot side ( V  > O),  
there is cumulated gain but hardly any loss! 

If we define moments Qv by 

&” = I f  (V,)%h,, (7.15) 

then moments of the precursor distribution (7.14) will differ from their value &;I 
at equilibrium by an amount 

0 I F2exp{- I ~ * / ~ l ) @ % .  
- w  

This quantity can be expressed in terms of the functions 

(7.16) 
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which have been studied and tabulated by Chahine & Narasimha (1964). Using 
the asymptotic expansions of g, given by them for large c*, we imediately have 

&”-&” 1 - - nz(~Pa-%7”(c*, U,) 

m n,(3/4-* (Q~*)”’3exp { - 3(+<*)+}. (7.17) 

The result that the moments decay eventually like exp { - c**> rather than like 
exp { - (} (omitting numerical constants multiplying (*, () has been derived 
previously by Lyubarskii (1961), using a very different method. He has pointed 
out that all continuum approximations predict an exp { - lei} decay, and hence 
will never give the correct asymptotic law. From the present analysis, it is clear 
that the outer solution is responsible for the slower decay; and hence that the 
inclusion of more terms in the inner (continuum) expansion will not necessarily 
ensure improved results always. It should, however, be pointed out that the flow 
quantities &” - Qi wiii in fact show a decay like exp { - I([] in a region where 

161 (as clne+cc and N = o ( E ) )  
will the decay become somewhat slower, eventually being like exp { - c*o}. 

The method we have used for obtaining these results gives us some insight into 
the structure of the distribution, and further suggests a way of generalizing 
them. For, we can derive the result (7.14) very simply from the basic integral 
equation (4.5). If we are far upstream of the shock in terms of the shock thickness, 
we can to a first approximation replace F by 

F = Pl+ ( F 2  - Fl) % ( E )  ; (7.18) 

i.e. an observer far away sees very nearly a discontinuity at ( = 0. Putting 
(7.18) into (4.5) and recalling that Fz 9 Fl at high velocities, we have 

f =  F1+%(- wGexP{- 1617-}. (7.19) 

This is in agreement with (7.14), showing that replacing the gain term in (4.15) 
by a discontinuity leads to a useful asymptotic result for the distribution far 
upstream. 

1 and N = O ( B ) ,  and only for much greater 

8. Extension to the true Boltzmann equation 
In  the model we have employed, the loss term has the same form as one would 

expect for Maxwell molecules in the true Boltzmann equation, and so is fairly 
realistic. But the assumption that the gain is proportional to the local Max- 
wellian rests on weaker ground, and the conclusions which can be traced to this 
assumption are precisely those on which doubts may be raised. 

Thus, for the true equation one can still say that at sufficiently low velocities 
G ( f )  -fL(f) N 0,  but this is not enough to conclude that the distribution at low 
velocities is approximately Maxwellian, because G( f )  is a complicated integral 
over all v. However, there is not much doubt that the very slow molecules are 
collision-dominated, because they always have very small free paths, 

For the true Boltzmann equation our basic integral equation for the shock 
can be written as 

2-2 
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in analogy with (4.2) for the model. From the discussion in § $ Z  and 5, it will be 
obvious that the inner solution of (8.1) will lead to the corresponding Chapman- 
Enskog results. We will not study here the other limits in general, but only show 
how the precursor results obtained for the model have to be modified for inverse 
power law molecules. 

First, consider the dependence of the loss on the velocity for fast molecules. 
This can be obtained by the following general argument. Suppose the inter- 
molecular force field is given by F = Kr-m-l, K and m being constants and r the 
distance. A molecule travelling at speed w and approaching a second molecule 
at a value b of the impact parameter delivers to the first molecule during the 
ensuing collision a net impulse I,, say, normal to its initial trajectory. This 
impulse is the integral of the normal force on the molecule over the time during 
which the force acts. The order of magnitude of the force is Kb-m-l and of the 
time bv-l; hence that of I ,  is Kb-"/w. If w is large, the angle of scattering is pro- 
portional to the ratio of IL to the initial momentum of the molecule mw, i.e. to 
K/mw2b. Hence the cross-section for a given scattering angle depends on w as 

b2 - (K/mvz)2'm. 

The free path h = h(w) at any velocity w is inversely proportional to the cross- 
section and the number density; thus 

nh - b-2 - (mw2/K)2'm. (8.2) 

For a Maxwell molecule m = 4, so h - w, as in the BGK model. For rigid spheres, 
which correspond to m-tco, (8.2) indicates that the free path tends to a finite 
value even for infinite velocities, which is a well-known result (e.g. Chapman & 
Cowling 1952, p. 95). 

The so-called Maxwell mean free path A is proportional to the value of h at 
the mean thermal speed, so 

Thus we can write 
nR - (mp/K)2/m. (8.3) 

(8.4) L ( f )  - w / A  - p-2/m~(S-4)'m/R. 

Now it is a general result that if the distribution is a Maxwellian F ,  then 
G ( F )  = F L ( F )  for any molecular model. From (8.4) the loss is only algebraic in 
w, for large w; hence the behaviour of the gain in the outer limit will be dominated 
by that of F. It follows that, as for the model, G(F2) will be exponentially greater 
than G(F,) in the outer limit. It is further likely that at any point within the shock 
G ( f )  will be similarly great compared to G(Fl). Consequently the argument of 
$7.3 will be valid for a general model; in particular, far upstream of the shock 
we may expect to obtain the precursor by replacing G in (8.1) by the step function 

G _" G(F1) +*(4 [G(F2) - G(FJ1. ( 8 . 5 )  

Subsituting this and (8.4) into (8.1), we get the approximate precursor distri- 
bution 

f ( x ,  v) N F,(v) +2( - wZ)F2(v) exp - ___ { A:iL/m]7 
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where k is some constant; equivalently, we obtain for the contracted distribution 

where 

The moments of this distribution can be written down in terms of the functions 
g V j  discussed in the appendix; thus, with j = 4/m, 

&“- Q; = n,(nPz”)-* g,,j(X*, - u,) 

as X* -+ 00. Thus, the decay of the moments is like exp { - X*l> with the index 

1 = 2 / ( j + 2 )  = m/(m+2). (8.8) 

This index is 2/3 for Maxwell molecules, as for the model. For rigid spheres 1 is 
unity, as in continuum theories.? As most monatomic gases are represented in 
the range 5 < m < 00, we usually have 3 < I < 1. 

Finally we would like to point out the possible relevance of the present results 
to an explanation of the ionization precursors observed in strong shocks (see, 
for example, Wetzel 1964). Although many complicated phenomena not 
considered here occur in zt plasma shock, it is interesting to note that (8.8) 
suggests a slow decay like exp{- lxl*} for charged particles. This could well 
contribute to the ionization observed at large distances ahead of a shock. 

9. Conclusions 
We may summarize our results here as follows. In any gas flow, no matter how 

small or large the nominal departure from equilibrium (as measured, say, by the 
conventional Knudsen number), the distribution function exhibits, in different 
regions in molecular velocity space, features characteristic of both collision- 
dominated and collisionless flow (and also, of course, of intermediate cases). 
There is always a collision-dominated ‘inner ’ core at sufficiently low velocities, 
and a nearly collisionless ‘outer ’ tail a t  sufficiently high velocities. When the 
nominal departure from equilibrium is small, the inner core often (but not always) 
covers the significant part of velocity space; when the departure is large, the 
outer region similarly covers most of v-space. The inner core is describable in 
terms of the local flow, but does not represent a closed description unless the 
departure from equilibrium is small; when it does, it is related to the Chapman- 
Enskog expansion, and leads to the Navier-Stokes equations (but without the 
help of the Euler equations as a first approximation). However, the Chapman- 
Enskog and the inner expansions are never uniformly valid in v-space. For a weak 
shock it proves necessary to construct a third, intermediate limit which links 

The value of 1 is largely determined by the form of the loss term; hence, at least in 
situations of the kind we are considering here, the assumption on the gain term in the 
BGK model is not as restrictive as it may seem at f i s t  sight. 
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the inner and outer solutions. The intermediate and outer solutions, which 
together describe the distribution of ‘fast ’ particles, depend in general on 
integrals over the flow, and so are global, in contrast to the inner expansion which 
is local. However, in a weak shock, these solutions for the fast particles also de- 
pend only on the local flow for molecules going downstream ; in fact, at  sufficiently 
high velocities, molecules travelling from the colder to the hotter parts of the 
flow accumulate by streaming, with negligible attenuation. But those going from 
the hotter to colder parts attenuate by collisions, with negligible additional gain 
by scattering. It is these latter particles which act as a precursor from the hot 
side of the shock in the unshocked gas (or the cold side). The departure from 
equilibrium on the cold side is eventually dominated by this precursor, i.e. by 
the outer solution, rather than by higher order terms of the inner solution. 

Thus, the non-uniformity of the inner solution in v-space results in the non- 
uniformity of the Navier-Stokes and other continuum solutions in x-space. 
This can be thought of as an extension of a result familiar in singular perturbation 
problems involving differential equations; namely that an approximate solu- 
tion valid everywhere must be available before the solution can be improved 
anywhere. The extension is that in kinetic theory (and in similar problems in- 
volving integral equations with a parameter like v), a solution for the distribu- 
tion f uniformly valid in v may be a pre-requisite not only for improving f any- 
where, but also for obtaining the moments off uniformly in x. Stated in these 
terms, it will be seen that the failure of the higher order terms of the Chapman- 
Enskog expansion to effect any appreciable improvement over the Navier- 
Stokes solution bears some mathematical resemblance to the failure of the Stokes 
expansions in low Reynolds number flow (e.g. Kaplun & Lagerstrom 1957). 
Further work to elucidate this idea is now in progress. 

One specific result from this kind of analysis is the prediction of the mode of 
decay in the precursor of a shock. The softer the intermolecular potential, the 
slower is the decay. The BGK model predicts a decay which is also characteristic 
of Maxwell molecules. As most monatomic gases possess harder potentials than 
the Maxwell molecule, the decay will in general be somewhat faster. Only for a 
hard sphere gas is this decay like e d l ,  as predicted by continuum theories. 
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Appendix 
We consider here a class of integrals defined by 

where X *  > 0. The particular casej = 1 has been studied by Chahine &, Nara- 
simha (1964), who show that for sufficiently large X *  (namely X* $ U3) ,  the 
leading term in an asymptotic expansion of gul E g,  is given by 

g,,(X*, U )  z (Q~)fr(gX*)”!3exp{-3(gX*))) (X*+co). (A 2) 

The same reference contains other results and brief tables. 

easily shown that 
If j = 0 ,  the term containing X *  can be taken outside the integral, and it is 

where I? (a , z )  is defined by ( 7 . 5 ~ ~ ) .  
For intermediate values of j, an asymptotic development for large X *  can be 

easily obtained as follows. The saddle point of the integrand is located a t  the 
root V ,  of the equation 

which for large X *  is given by 

2vg+l(V,- U )  = j x * ,  

v, = (gjjX*)l/(f+Z)+ O( 77). 

Integrating around the saddle point as usual, we obtain 

For j = 1 this reduces to (A 2). 
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